

Shengze (William) Wang

Ph.D. Candidate, Computer Science and Engineering

Homepage: <https://shengze.io>

Email: shengze@ucsc.edu

TECHNICAL SKILLS

- **Academic:** Computer Networks & Distributed Systems and their applications in AI Infrastructure (Systems & Networking for AI), AI for Systems & Databases, LLM Inference & Serving Efficiency, VectorDB
- **Languages & Databases:** C/C++, Rust, Python, eBPF, Redis, Cassandra, DynamoDB, Milvus, Pinecone, HDFS, SQL
- **Platforms & Tools:** Linux, ROS, Ray, Kubernetes - k8s, Apache Spark, Kafka, ns-3, P4 Switch, RDMA, CUDA, FPGAs, vLLM, SGLang, JAX/XLA, PyTorch, Transformers, NCCL, TPU, FPGAs, AWS, Azure, GCP, Docker, Slurm, Git
- **Highlights:** Scalable Key-Value Storage, LLM Inference & ML System Design, Applied AI for Systems & Databases, MLOps & Production Deployment, Advanced Network Protocols & Security, Workload Characterization & Balancing, Content Delivery & High-Performance Networks, ML Stream Processing & Real-Time Analytics, Hashing Algorithms, Edge-Cloud Systems

EDUCATION

University of California, Santa Cruz (UCSC)	San Francisco Bay Area
• <i>Ph.D. in Computer Science and Engineering; Regents Fellowship; BE Dean's Fellowship</i>	2023 - present
<i>Relevant Courses: Adv Computer Networks, Network Security, Computer Architecture, Adv Distributed Systems, Stream Processing, Programming Languages, Adv Machine Learning, Adv Natural Language Processing, Artificial Intelligence, Analysis of Algorithms</i>	
University of North Texas (UNT)	Dallas - Fort Worth
• <i>B.S. in Computer Science; GPA: 4.0; Outstanding Award (Top 1 of Class 2023); President's List</i>	2020 - 2023
<i>Relevant Courses: Algorithms, Machine Learning, Software Engineering, Systems Programming, Database Systems, Computer Networks, Computer Security, Operating Systems, Probability Models, Linear Algebra, IT Project Management, Technical Writing</i>	
King's College London (KCL)	London, United Kingdom
• <i>Visiting Student in Computer Science; Scored: 95/100; JEISE Scholarship</i>	2019

WORKING EXPERIENCE

• Software Engineering Intern - AI Networking R&D	Google LLC	2026 -
• Graduate Student Researcher	Baskin School of Engineering, UCSC	June. 2023 - present
• Undergraduate Research Assistant	Department of Computer Science, UNT	Sept. 2021 - May. 2023

SELECTED PROJECTS

Scalable AI Infrastructure for High-Performance LLM Serving — C/C++, Python	2023 - present
• <i>Qian Lab, https://users.soe.ucsc.edu/~qian/; Center for Research in Systems and Storage (CRSS)</i>	
<ul style="list-style-type: none">○ Designed methods to provide user anonymity and low-overhead encryption for queries/responses in large-scale overlay networks, blending failover resilience with robust privacy guarantees. Developed load balancing mechanisms with distributed key management to support a decentralized and fault-tolerant LLM system.○ Integrate Vector Databases to accelerate retrieval-augmented generation over billions of embeddings, achieving efficient approximate nearest neighbor lookups for knowledge-intensive LLM applications. Investigate novel indexing and query pipelines to enhance retrieval accuracy and throughput.○ Devised a draft-then-filter mechanism to generate candidate tokens, then selectively offload low-confidence tokens to the full-scale LLM, achieving up to 2x speedup in real-time inference without sacrificing output quality.○ Implemented NLL-based confidence scoring to dynamically filter high-quality drafts, preventing unnecessary requests to the target LLM and thus lowering GPU consumption. Enhanced MLOps with continuous integration and robust monitoring, streamlining the model lifecycle from draft-model updates to large-scale deployments.○ Proposed “CALID”: a novel inference framework that integrates speculative decoding principles to boost throughput and reduce computational overhead for large language models.○ Proposed Span-Level Fine-Tuning with unlikelihood training: a novel approach that leverages annotated unfaithful spans in LLM-generated summaries to reduce hallucinations and improve factual accuracy.○ Proposed “GenTorrent”: a decentralized overlay network to enhance Large Language Model (LLM) serving scalability and cost-efficiency by harnessing computing resources from distributed contributors. It addresses fundamental challenges in decentralized LLM serving, including overlay network organization, anonymous communication for privacy, efficient overlay forwarding for load balancing and cache reuse, and decentralized verification of model serving quality. GenTorrent aims to democratize AI innovation, significantly reduce serving latency, and improve user privacy, offering a novel approach to future AI deployment.	

Resource Storage and Discovery in Network & Database Systems — C/C++, Rust	2023 - present
• <i>Qian Lab, https://users.soe.ucsc.edu/~qian/; NSF Center for Systems and Storage, https://ssrc.us/</i>	
<ul style="list-style-type: none">○ Investigate fundamental problems in emerging networks, emphasizing efficient data placement, fault tolerance, and high-throughput designs. (e.g., datacenter networks, CDNs, and quantum networking)○ Architect and refine critical components—network protocols, routing algorithms, hashing strategies, and load balancers—for enterprise-scale deployments (e.g., HPC clusters, IoT networks, programmable switches).○ Implement and evaluate prototypes using event-driven simulators (e.g., ns-3, p2psim) and cloud-based testbeds (AWS, Lambda Labs, CloudLabs, Supercomputers), leveraging asynchronous I/O and concurrency.	

- Proposed **“LEAD”**: A novel Distributed Learned Hash Table that embeds machine-learned models within Distributed hash table structures to **significantly optimize range query performance** for distributed networked systems. LEAD outperforms existing range-query solutions by demonstrating **superior scalability, reduced latency, and robustness against network churns**. LEAD opens a completely new field for further research on integrating learned models with distributed systems.(<https://github.com/ShengzeWang/LEAD>; <https://github.com/ShengzeWang/RM>)
- Proposed **“Vortex”**: A fully decentralized, planet-scale Vector overlay. Designed Distributed Learned Hashing (DLH) for locality and load balance, DHT routing for fault-tolerant lookup under churn, and per-peer D-HNSW for high-recall local search. Results match SOTA centralized systems' accuracy/latency while reducing per-peer index memory by $\sim 100\times$. (Learned Hash Function Library: <https://github.com/ShengzeWang/LearnedHash>)

Vehicular Edge Computing and Connected Autonomous Vehicles — Python, ROS

2021 - 2023

- *NSF Center for Electric, Connected and Autonomous Technologies*, <https://ecat.center/>, <http://veclab.org/>

- **Profiled hardware resource usage (GPU, CPU, Memory)** for real-time object detectors (YOLO, Faster R-CNN, SSD) deployed in ROS-based CAV perception pipelines.
- Investigated model optimizations, including **quantization, architectural pruning, and mixed-precision**, achieving a measurable trade-off between inference speed and detection accuracy under edge-device constraints.
- Characterized **memory contention and identified performance bottlenecks**, enabling targeted optimization strategies (e.g., improved scheduling, memory partitioning) that enhanced detection throughput.
- Developed **workload models** reflecting diverse edge-device configurations (e.g., NVIDIA Jetson, Intel CPUs, Raspberry Pi), facilitating **informed resource allocation and adaptive scheduling** across heterogeneous deployments.
- Implemented and validated **Vehicle-to-Edge (V2X) communication frameworks** using AWS Edge Services, resulting in reduced latency and improved real-time responsiveness

False Discovery Rates (FDR) Control in Metaproteomics Search — C++, Python

2021 - 2023

- *Center for Computational Epidemiology and Response Analysis (CeCERA)*, <https://cerl.unt.edu/>

- Addressed systematic FDR biases in metaproteomics pipelines by incorporating **probabilistic modeling and statistical corrections**, reducing false-positive identifications across large proteomic datasets.
- Proposed **“FineFDR”**: an open-source, fine-grained FDR assessment framework that seamlessly integrates with Comet and Percolator outputs at multiple taxonomic ranks. (<https://github.com/Biocomputing-Research-Group/FDR>)
- Implemented the **Expectation-Maximization General-Mixture Model** for clustering proteomic samples based on abundance profiles, substantially enhancing the detection sensitivity for lower-abundance peptides.
- Benchmarked six FDR control solutions (including Comet, Percolator, and Tailor) on ten diverse datasets, demonstrating notable gains in **precision and increased peptide/protein identifications** compared to state-of-the-art approaches.

SELECTED PUBLICATIONS

• A Distributed Learned Hash Table	Feb. 2026
• <i>IEEE/ACM Transactions on Networking (TON)</i>	<i>First Author</i>
• PlanetServe: A Decentralized, Scalable, and Privacy-Preserving Overlay for Democratizing Large Language Model Serving	Sep. 2025
• <i>2026 USENIX Symposium on Networked Systems Design and Implementation (NSDI)</i>	<i>Co-primary Author</i>
• LEAD: A Distributed Learned Hash Table	Aug. 2025
• <i>2025 IEEE International Conference on Network Protocols (ICNP)</i>	<i>First Author & Oral</i>
• Vortex: Efficient Decentralized Vector Overlay for Similarity Search and Delivery	Aug. 2025
• <i>2025 IEEE International Conference on Network Protocols (ICNP); *BEST POSTER AWARD*</i>	<i>First Author</i>
• Characterizing Perception Deep Learning Algorithms and Applications for Vehicular Edge Computing	Jan. 2025
• <i>Algorithms 2025, 18(1), 31; Special Issue: Machine Learning for Edge Computing</i>	<i>Co-Author</i>
• CALID: Collaborative Accelerate LLM Inference with Draft Model with Filter Decoding	May. 2024
• <i>Poster at 2024 BayLearn - Machine Learning Symposium (Apple)</i>	<i>Co-Author</i>
• Enhancing Faithfulness in Abstractive Summarization via Span-Level Fine-Tuning	May. 2024
• <i>Poster at 2024 BayLearn - Machine Learning Symposium (Apple)</i>	<i>Co-Author</i>
• Distributed Learned Hash Table	Sept. 2024
• <i>2024 IEEE International Conference on Network Protocols (ICNP)</i>	<i>First Author & Poster</i>
• Perception Workload Characterization and Prediction on the Vehicular Edges	Jul. 2023
• <i>2023 IEEE International Conference on Edge Computing (EDGE)</i>	<i>Co-primary Author</i>
• Fine-grained Taxonomy-specific False Discovery Rates Control in Metaproteomics	Nov. 2022
• <i>2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)</i>	<i>First Author & Oral</i>

PROFESSIONAL SERVICES

• Reviewer	IEEE/ACM TON, IEEE TDSC, ACM SIGCOMM, IEEE INFOCOM
• Teaching Assistant	CSE 13S: Computer Systems and C Programming - 24 Winter, 25 Winter
• Mentor	NSF Research Experiences for Undergraduates (REU) in Vehicular Edge Computing and Security