
A Distributed Learned Hash Table

Shengze Wang[1], Yi Liu[1], Xiaoxue Zhang[2], Liting Hu[1], Chen Qian[1]

[1]University of California, Santa Cruz [2]University of Nevada, Reno

Shengze@ucsc.edu | Shengze.io

Vector
Databases

LLM Serving
& RAG

KV Cache
Management

Content Delivery Network
Storages

Edge-AI &
IoT Data Lakes

Blockchain
Indexing

Range Query
New field for further research on integrating learned models with distributed systems.

Fetching KV Cache you already computed.
New Bottleneck in LLM serving

Background and Motivation | LEAD Design | Evaluation | Takeaways 2

• Long contexts ⇒ massive KV; Prefix sharing across workers

• Need fast retrieval of contiguous ranges

• Avoid bottlenecks from central KV router

Fetching KV Cache you already computed.
New Bottleneck in LLM serving

Background and Motivation | LEAD Design | Evaluation | Takeaways 3

• Fetch spans (contiguous or semantic) , not only points

• Few hops per request; Robust to churn; Works at scale

Distributed Hash Table (DHT)
DHTs are pivotal in high-impact key-value applications

4

• Consistent hashing spreads key–value data across peers

• Map key → ID; place by ID; route via finger tables in O(log N)

Deployments: Storage

(IPFS), DBs (Cassandra),

Blockchains (Ethereum),

Protocols (BitTorrent),

CDNs, Edge/IoT, etc.

Background and Motivation | LEAD Design | Evaluation | Takeaways

Classical DHTs fail for ranges.
Limitations of DHT for AI- and Data-driven workloads

5

• Central tables/trees: heavy for maintenance, brittle for churns

• Hashing destroys order

• Nearby keys ⇒
random nodes

• Range ⇒
massive lookups

Background and Motivation | LEAD Design | Evaluation | Takeaways

LEAD = LEArned DHT.
Make DHTs even greater with efficient range query

6

• Learn the keys’ ECDF

• Map to ordered hash IDs

• DHT routing & ownership

• Ranges query ⇒
contiguous hash ranges

Background and Motivation | LEAD Design | Evaluation | Takeaways

Learned Hash Function (LHF).
Make DHTs even greater with efficient range query

7

• We argue that a learned model can

replace the hash function to distribute

keys in networked systems.

• LEAD first introduces the concept of the

Learned Hash Function under the

realm of distributed key-value systems.

Background and Motivation | LEAD Design | Evaluation | Takeaways

Learned Hash Function (LHF).
Mapping keys into order-preserving hash

8Background and Motivation | LEAD Design | Evaluation | Takeaways

• Learning hash with

Recursive Model (RMI)

structure

• At each stage, the sub-

model determines the

appropriate child model

to engage for a key.

Learned Hash Function (LHF).
Mapping keys into order-preserving hash

9Background and Motivation | LEAD Design | Evaluation | Takeaways

• At the final stage, leaf

models predict the

relative position of a key

and map the key to the

hashing space.

Learned Hash Function (LHF).
Mapping keys into order-preserving hash

10Background and Motivation | LEAD Design | Evaluation | Takeaways

Data Retrieval with LHF.
Peer Addressing

11

• Route via picking

farthest preceding finger

• O(log N) hops to owner

• Separated hash space for

ownership with PeerHASH

Background and Motivation | LEAD Design | Evaluation | Takeaways

Data Retrieval with LHF.
Range Query

12

• Hash start key K via

Learned hash function

• Route to owner S, do

local in-memory range,

then successor chain if

needed (typically 0/1 hops)

Background and Motivation | LEAD Design | Evaluation | Takeaways

Federated Recursive Model (FRM)
Model Update for LH

13

• Leaves refined locally

• Transient coordinator aggregates

neighbors (avg-reduce)

• Consistency via heartbeats

• System remains operational

Background and Motivation | LEAD Design | Evaluation | Takeaways

LEAD, Leading Performance
Large-scale simulation and Real-world measurement

14

• Four baselines covering batched query and range-partition style (Marques)

• LEAD reducing query latency and message cost by 80% to 90%+

Background and Motivation | LEAD Design | Evaluation | Takeaways

LEAD, Leading Performance
Large-scale simulation and Real-world measurement

15

• No trade-off with range improvement

• SoTA single-key in O(log N) hops

• Scale with network

• Strong network churn resistance

• Minimal maintenance overhead

Background and Motivation | LEAD Design | Evaluation | Takeaways

LEAD, Leading Performance
Case study I : KV Cache Management for LLM Serving

16

• 8 × A100×1 nodes, Llama-3 8B, block size 16, ~500M KV blocks

• Long-DocQA workload; need contiguous KV ranges

• LEAD ≈ upper-bound retrieval latency; dramatically fewer

messages than DHT; better load balance and scalability

Background and Motivation | LEAD Design | Evaluation | Takeaways

LEAD, Leading Performance
Additional details available

17

• Detailed setups and results

• Load balancing with Shadow Balancer

• Model update during churn

• Benchmark of Learned models

• Shadow Balancer, Learned Model overhead analysis

• Stabilization and Failure Recovery

• Security Considerations

• Case study II : InterPlanetary File System (IPFS)

• Case study III: Blockchain application

Background and Motivation | LEAD Design | Evaluation | Takeaways

Expanding LEAD into Emerging Domains
Integrating learned models with distributed systems.

18

• LEAD, a novel distributed key-value storage and lookup system

designed to significantly enhance the efficiency of range

queries by incorporating learned models with DHTs.

• LEAD opens a completely new field for further research on

integrating learned models with distributed systems. E.g., Vector

Databases, LLM Cache, Edge-AI, CDN, Blockchains, etc.

• The implementation details are publicly available at

https://github.com/ShengzeWang/LEAD.

Background and Motivation | LEAD Design | Evaluation | Takeaways

Thank you!
Learning to Hash for Networked Systems

19Background and Motivation | LEAD Design | Evaluation | Takeaways

Connect! Shengze@ucsc.edu | Shengze.io

• Opportunity: Your Domain! , Switch, Blockchain, Edge, etc.

• Our efforts with LHF: LEAD (LEArned DHT, ICNP’25),
Vortex (Vector Overlay for Similarity Search and Delivery,

undergoing, ICNP’25 Best Poster), Knowledge Delivery for

LLM Serving (undergoing)

• Also, check our recent work on Open LLM Serving:

GenTorrent: Scaling Large Language Model Serving with An

Overlay Network (arXiv:2504.20101)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

