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New field for further research on integrating learned models with distributed systems.



Fetching KV Cache you already computed.
New Bottleneck in LLM serving
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• Long contexts ⇒ massive KV; Prefix sharing across workers

• Need fast retrieval of contiguous ranges 

• Avoid bottlenecks from central KV router



Fetching KV Cache you already computed.
New Bottleneck in LLM serving
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• Fetch spans (contiguous or semantic) , not only points

• Few hops per request; Robust to churn; Works at scale



Distributed Hash Table (DHT)
DHTs are pivotal in high-impact key-value applications
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• Consistent hashing spreads key–value data across peers

• Map key → ID; place by ID; route via finger tables in O(log N)

Deployments: Storage 

(IPFS), DBs (Cassandra), 

Blockchains (Ethereum), 

Protocols (BitTorrent), 

CDNs, Edge/IoT, etc.
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Classical DHTs fail for ranges.
Limitations of DHT for AI- and Data-driven workloads
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• Central tables/trees: heavy for maintenance, brittle for churns

• Hashing destroys order

• Nearby keys ⇒
random nodes

• Range ⇒
massive lookups
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LEAD = LEArned DHT.
Make DHTs even greater with efficient range query

6

• Learn the keys’ ECDF

• Map to ordered hash IDs

• DHT routing & ownership

• Ranges query ⇒
contiguous hash ranges
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Learned Hash Function (LHF).
Make DHTs even greater with efficient range query
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• We argue that a learned model can 

replace the hash function to distribute 

keys in networked systems.

• LEAD first introduces the concept of the 

Learned Hash Function under the 

realm of distributed key-value systems.
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Learned Hash Function (LHF).
Mapping keys into order-preserving hash 
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• Learning hash with 

Recursive Model (RMI) 

structure

• At each stage, the sub-

model determines the 

appropriate child model 

to engage for a key.



Learned Hash Function (LHF).
Mapping keys into order-preserving hash 
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• At the final stage, leaf 

models predict the 

relative position of a key

and map the key to the 

hashing space.



Learned Hash Function (LHF).
Mapping keys into order-preserving hash 
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Data Retrieval with LHF.
Peer Addressing
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• Route via picking 

farthest preceding finger

• O(log N) hops to owner

• Separated hash space for 

ownership with PeerHASH
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Data Retrieval with LHF.
Range Query
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• Hash start key K via 

Learned hash function

• Route to owner S, do 

local in-memory range, 

then successor chain if 

needed (typically 0/1 hops)
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Federated Recursive Model (FRM)
Model Update for LH

13

• Leaves refined locally

• Transient coordinator aggregates 

neighbors (avg-reduce)

• Consistency via heartbeats

• System remains operational
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LEAD, Leading Performance
Large-scale simulation and Real-world measurement
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• Four baselines covering batched query and range-partition style (Marques)

• LEAD reducing query latency and message cost by 80% to 90%+
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LEAD, Leading Performance
Large-scale simulation and Real-world measurement
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• No trade-off with range improvement 

• SoTA single-key in O(log N) hops

• Scale with network

• Strong network churn resistance

• Minimal maintenance overhead

Background and Motivation | LEAD Design | Evaluation | Takeaways



LEAD, Leading Performance
Case study I : KV Cache Management for LLM Serving
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• 8 × A100×1 nodes, Llama-3 8B, block size 16, ~500M KV blocks

• Long-DocQA workload; need contiguous KV ranges

• LEAD ≈ upper-bound retrieval latency; dramatically fewer 

messages than DHT; better load balance and scalability
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LEAD, Leading Performance
Additional details available
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• Detailed setups and results

• Load balancing with Shadow Balancer

• Model update during churn

• Benchmark of Learned models

• Shadow Balancer, Learned Model overhead analysis

• Stabilization and Failure Recovery

• Security Considerations

• Case study II : InterPlanetary File System (IPFS)

• Case study III: Blockchain application
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Expanding LEAD into Emerging Domains
Integrating learned models with distributed systems.
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• LEAD, a novel distributed key-value storage and lookup system 

designed to significantly enhance the efficiency of range 

queries by incorporating learned models with DHTs.

• LEAD opens a completely new field for further research on 

integrating learned models with distributed systems. E.g., Vector 

Databases, LLM Cache, Edge-AI, CDN, Blockchains, etc.

• The implementation details are publicly available at 

https://github.com/ShengzeWang/LEAD.
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Thank you!
Learning to Hash for Networked Systems
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Connect!  Shengze@ucsc.edu | Shengze.io

• Opportunity: Your Domain! , Switch, Blockchain, Edge, etc.

• Our efforts with LHF: LEAD (LEArned DHT, ICNP’25), 
Vortex (Vector Overlay for Similarity Search and Delivery, 

undergoing, ICNP’25 Best Poster), Knowledge Delivery for 

LLM Serving (undergoing)

• Also, check our recent work on Open LLM Serving: 

GenTorrent: Scaling Large Language Model Serving with An 

Overlay Network (arXiv:2504.20101)
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