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LEAD (LEArned DHT), with Learned Hash Function
New field for further research onintegrating learned models with distributed systems
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New Bottleneck in LLM serving

User prompt Paged attention blocks

Range retrieval on cache hit High-speed link

PPRRPR®

Node 0 Node 1 Node 2 Node3 Noded Node 5 Node 6

* Long contexts = massive KV; Prefix sharing across workers
* Need fast retrieval of contiguous ranges
* Avoid bottlenecks from central KV router
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New Bottleneck in LLM serving

User prompt Paged attention blocks

Range I‘Etl"iE‘d"El on cache hit High- SPEETI link

TrYrLELL

Node 0 Node 1 Node 2 Node3 Noded Node 5 Node 6

* Fetch spans (contiguous or semantic) , not only points
 Few hops per request; Robust to churn; Works at scale
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DHTs are pivotal in high-impact key-value applications

» Consistent hashing spreads key—value data across peers
* Map key — ID; place by ID; route via finger tables in O(log N)

Data Key Distributed
Deployments: Storage gy I — Network
(IPFS), DBs (Cassandra), ___ ~—

Blockchains (Ethereum), —|®es > we —[E0EET
Protocols (BitTorrent), o - =
CDNs, Edge/loT, etc. Dl | Lt [ Pl
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Limitations of DHT for Al- and Data-driven workloads
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Fig. 1. Micro benchmark of Range Query Performance

 Central tables/trees: heavy for maintenance, brittle for churns
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Make DHTs even greater with efficient range query
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Fig. 2. LEAD System Design
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Make DHTs even greater with efficient range query

 We argue that a learned model can
replace the hash function to distribute
keys in networked systems.

« LEAD first introduces the concept of the
Learned Hash Function under the
realm of distributed key-value systems.

LHF
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Mapping keys into order-preserving hash

* Learning hash with
Recursive Model (RMI)
structure

At each stage, the sub-
model determines the
appropriate child model
to engage for a key.
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Fig. 3. Key mapping with a learned hash function
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Mapping keys into order-preserving hash

* At the final stage, leaf
models predict the
relative position of a key
and map the key to the
hashing space.

Position m
-~

> Key
CDF of Key-value Pairs

Learned Hash Function

— > .
Recursive Model

]

PAN

Map

Hashing
Space

LEAD Overlay

!

Distribute

Hash Value

Fig. 3. Key mapping with a learned hash function
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Mapping keys into order-preserving hash

Considering a two-stage LH trained on IV key-value pairs, the

learned hash function, denoted as LearnedH ASH,
can be articulated as: u b
B X f1(x)

LearnedH ASH (key) = L% X fQL N J(K)J (1)

“B referred to as the branching factor that determimines the number of
"buckets" that data 1s divided into by the stage-one model

b f; referred to as the ith stage model

LHF
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Peer Addressing }
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Fig. 5. Range Query in LEAD
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Range Query -
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Fig. 5. Range Query in LEAD
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Model Update for LH . Model

Initialization
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Fig. 4. Collaborative Model Update
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Large-scale simulation and Real-world measurement
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Fig. 6. Latency of range queries on various datasets in the real-machine testbed

» Four baselines covering batched query and range-partition style (Marques)
* LEAD reducing query latency and message cost by 80% to 90%+
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Large-scale simulation and Real-world measurement
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Fig. 9. Latency of range queries under various conditions

. No trade-off with range improvement Scale with network

: ; » Strong network churn resistance
SOTA single-key in O(log N) hops » Minimal maintenance overhead
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Case study | : KV Cache Management for LLM Serving

8 x A100x1 nodes, Llama-3 8B, block size 16, ~500M KV blocks

« Long-DocQA workload; need contiguous KV ranges

« LEAD = upper-bound retrieval latency; dramatically fewer
messages than DHT; better load balance and scalability
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Fig. 15. KV Cache Management
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Additional details available

« Detailed setups and results

« Load balancing with Shadow Balancer

* Model update during churn

 Benchmark of Learned models

« Shadow Balancer, Learned Model overhead analysis
- Stabilization and Failure Recovery

« Security Considerations

« Case study Il : InterPlanetary File System (IPFS)

« Case study lll: Blockchain application

LHF
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Integrating learned models with distributed systems.

« LEAD, a novel distributed key-value storage and lookup system
designed to significantly enhance the efficiency of range
queries by incorporating learned models with DHTSs.

 LEAD opens a completely new field for further research on
integrating learned models with distributed systems. E.g., Vector
Databases, LLM Cache, Edge-Al, CDN, Blockchains, efc.

« The implementation details are publicly available at
https://github.com/ShengzeWang/LEAD.

LHF
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Learning to Hash for Networked Systems

« Opportunity: Your Domain! , Switch, Blockchain, Edge, etc.

* Our efforts with LHF: LEAD (LEArned DHT, ICNP’25),
Vortex (Vector Overlay for Similarity Search and Delivery,
undergoing, ICNP’25 Best Poster), Knowledge Delivery for
LLM Serving (undergoing)

» Also, check our recent work on Open LLM Serving:
GenTorrent: Scaling Large Language Model Serving with An
Overlay Network (arXiv:2504.20101) O HON

Connect! Shengze@ucsc.edu | Shengze.io @"ﬂ*@_ﬁ & )

LHF
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