
Perception Workload Characterization
and Prediction on the Edges with

Memory Contention for Connected
Autonomous Vehicles

Authors: Sihai Tang, Shengze Wang, Song Fu, and Qing Yang

Department of Computer Science and Engineering

University of North Texas

Presented By: Sihai Tang

Outline

• Introduction and Motivation
• Preliminary Experimentation and

Data Challenges
• Methodology
• Characterization and Findings
• Layer and Memory
• Conclusions and Future Works

Introduction

• Perception plays a vital role in the operation of Autonomous Vehicles (AVs), ensuring the
safety and efficiency of these vehicles.

• Deep Neural Networks (DNNs) are the preferred choice for this module due to their
accuracy and speed.

• DNNs, such as YOLO, SSD, Faster RCNN, DeepLab, and LaneNet, are extensively
researched and deployed for tasks like object detection and image segmentation.

• However, the deployment of DNNs as Edge workloads presents challenges.
• Continuous Training Cycles, Expensive Data, Limited Resource Compared to Cloud….

Autonomous
vehicle to
Edge node
interaction

Challenges
• Limited Resources on Edge for CAV tasks

• HD Maps, Fusion Detection, Bandwidth Saturation Tasks…
• Power Constraints, and Task Overload Queue
• When it comes to Perception workloads, variance in Edge platform and hardware is

especially challenging.
• Traditional Techniques such as model or architectural optimization cannot keep up!

Motivation
and Literature

• Traditional Scheduling
• Middleware with layer by

layer
• MASA, Deepeye and

DART
• Architectural

Enhancements
• DAMO-YOLO

Presenter Notes
Presentation Notes
DAMO Yolo adds NAS and Reparameterized Generalized FPN,
MAE NAS – nas guided by principle of maximum entropy to search detection backbone. – Large Neck small Head
Achieves better performance
MASA manages the memory requirements of multiple DNNs without altering the network structure and its resource demands.
DeepEye [7] and Layerweaver [30] use interleaving of layers to optimize the execution of multiple DNNs.
DART [28] groups a subset of DNN layers (task-level stage) and assigns them to workers of CPUs and GPUs to minimize task response times by balancing tasks over resources.
Masa assumes that trained models can be split into independent stages, e.g. DNN layers, which fit the available memory. Models that cannot be split or have layers larger than the available memory, will have a lowered response time performance. Models where the input of a layer depends on multiple preceding layers, e.g. shortcuts in Residual Networks, also increases the peak memory usage of stages which can reduce the effectiveness of Masa.

Preliminary
Characterization
(CPU)

GPU Characterization

Optimization
Analysis - Hardware

• Both hardware GPUs are PCIe Gen 3
• 1060 - 1 Lane ; 2070 - 2 Lane

Optimization
Direction

• In a theoretically perfect
scenario, we can achieve
the optimal speed to the
right.

• But this varies with
hardware and code

• Can cause system
instability if letting the
system decide

Presenter Notes
Presentation Notes
Unified memory is a programming construct that allows the distinction between host and device memory to be somewhat obscured. But allocations in unified memory must still fit entirely within the available memory of the GPU, to be usable in device code. It will not allow you to “expand” the memory available to the GPU, beyond what is “on board”.

Pinned memory should allow you to expand the memory available to the GPU. There are many specific details which must be attended to. It will depend on what kind of GPU you have, as well as what operating system you are running, especially whether it is 32-bit or 64-bit. Furthermore, pinning memory “removes” it from the host demand-paged virtual memory system. I have successfully pinned 32GB in a 48GB host machine, but pinning 64GB will require significantly more than 64GB in your host machine (as well as other specifics).

Finally, pinned memory at best can achieve an access bandwidth approximately equal to your PCI Express bandwidth (discoverable using the bandwidthTest utility). Such bandwidth is generally quite a bit lower than what is available directly to the on-board GPU memory. So there is no free lunch.

EDIT: The first paragraph was correct when it was written in the CUDA 6 timeframe when unified memory was first introduced. With the advent of CUDA 8, oversubscription of GPU memory became possible in some settings. So in these settings, a managed allocation can exceed the size of the available physical “on board” GPU RAM

https://forums.developer.nvidia.com/t/unified-memory-vs-pinned-host-memory-vs-gpu-global-memory/34640

Initial Results

16ms 33ms 44ms165ms

4746ms

5698ms

Initial Modeling without Scenario Dividing

• It proved impossible to fully predict the behavior or explain the deeper
attribute impacts based on the attributes alone.

• The impacts of Memory are very apparent, but the data cannot fight the skew
in many modeling methods.

Regression and Classification

13 Methods used
• Linear Regression
• Gaussian Process
• Isotonic Regression
• Multilayer Perceptron (MLP) Regressor
• MLP Base
• MLP CS
• Pace Regression
• Radial Basis Function (RBF) Network
• RBF Regressor
• Simple Linear Regression
• SMOreg (SVM)
• Correlated Nystrom Views(XNV)

Attributes Tested:
Filter Number
Filter Size
Stride length
Input Size
Input Depth/Feature Dimension
Output Size
Output Depth
Target: BFlops

Regression and Classification

13 Methods used
• Linear Regression |0.82
• Gaussian Process |0.76
• Isotonic Regression |0.85
• Multilayer Perceptron (MLP) Regressor |0.88
• MLP Base |0.84
• MLP CS |0.84
• Pace Regression |0.80
• Radial Basis Function (RBF) Network |0.43
• RBF Regressor |0.87
• Simple Linear Regression |0.85
• SMOreg (SVM) |0.81
• Correlated Nystrom Views(XNV) |0.90

filters Size Stride input_xy input_depth output_xy output_depth BF
32 9 1 102400 3 102400 32 0.177
64 9 2 102400 32 25600 64 0.944
64 1 1 25600 64 25600 64 0.21
64 1 1 25600 64 25600 64 0.21
32 1 1 25600 64 25600 32 0.105
64 9 1 25600 32 25600 64 0.944
64 1 1 25600 64 25600 64 0.21
64 1 1 25600 128 25600 64 0.419
28 9 2 25600 64 6400 128 0.944
64 1 1 6400 128 6400 64 0.105
64 1 1 6400 128 6400 64 0.105
64 1 1 6400 64 6400 64 0.052
64 9 1 6400 64 6400 64 0.472
64 1 1 6400 64 6400 64 0.052
64 9 1 6400 64 6400 64 0.472
64 1 1 6400 64 6400 64 0.052
28 1 1 6400 128 6400 128 0.21

Regression and Classification

13 Methods used
• Linear Regression |0.82
• Gaussian Process |0.76
• Isotonic Regression |0.85
• Multilayer Perceptron (MLP) Regressor |0.88
• MLP Base |0.84
• MLP CS |0.84
• Pace Regression |0.80
• Radial Basis Function (RBF) Network |0.43
• RBF Regressor |0.87
• Simple Linear Regression |0.85
• SMOreg (SVM) |0.81
• Correlated Nystrom Views(XNV) |0.90

BF = 0.058 * size +
 0 * input_xy +

-0.0002 *input_depth +
 -0 * output_xy +

0.0004 * output_depth +
 -0.0033

Presenter Notes
Presentation Notes
Correlated Nystrom Views (XNV), a fast semi-supervised algorithm for regression and classification. The algorithm draws on two main ideas. First, it generates two views consisting of computationally inexpensive random features. Second, XNV applies multiview regression using Canonical Correlation Analysis (CCA) on unlabeled data to bias the regression towards useful features. It has been shown that, if the views contains accurate estimators, CCA regression can substantially reduce variance with a minimal increase in bias. Random views are justified by recent theoretical and empirical work showing that regression with random features closely approximates kernel regression, implying that random views can be expected to contain accurate estimators. We show that XNV consistently outperforms a state-of-the-art algorithm for semi-supervised learning: substantially improving predictive performance and reducing the variability of performance on a wide variety of real-world datasets, whilst also reducing runtime by orders of magnitude.

The advantages of Multi-layer Perceptron are:
Capability to learn non-linear models.
Capability to learn models in real-time (on-line learning) using partial_fit.
The disadvantages of Multi-layer Perceptron (MLP) include:
MLP with hidden layers have a non-convex loss function where there exists more than one local minimum. Therefore different random weight initializations can lead to different validation accuracy.
MLP requires tuning a number of hyperparameters such as the number of hidden neurons, layers, and iterations.
MLP is sensitive to feature scaling.

Methodology of Characterization
• From the Preliminary empirical analysis, we found several factors that required deeper

analysis for meaningful Characterization.
• Single Stage YOLOv3 and Two-Stage Faster-RCNN are chosen as the representative for

each category of network.
• To characterize the workload behavior, we chose the following potential variables:

• Processor Resource
• RAM memory resource
• Workload Size calculated from service type and input size
• Time to process the workload

Setup and Scenarios
• To profile our ML methods, we simulate the high-end Edge nodes with a machine

equipped with an Intel Core i7-10750H, Nvidia GeForce RTX 2070, 16 GB of DDR4 RAM,
and a 1 TB NVMe SSD.

• The total operating power constraint for the laptop is set to 250 Watts.
• For the lower-end Edge node, we opted for the Nvidia Jetson Xavier NX. It supports nine

optimized power budgets to cap the CPU core numbers and their frequencies.
• Power modes in our experiments include 20W, 15W, or 10W TDP with six, four, or

two CPU cores.

Experimental Analysis (Low-End)

High-End

Layer by Layer

Characterization
• With the Extensive data gathered,

multiple attributes and models were
applied.

• We found that while it is possible to
characterize the workload effectively,
it required scenarios to fully capture
the extent of behaviors analyzed.

Conclusion
• By characterizing and generalizing our findings, we provide valuable insights into the

performance and potential of Edge devices for machine learning workloads.
• We Identified that convolutional layers, along with Routing, Shortcut, and ReLU

activation layers, are the predominant layers affected by factors such as memory
availability. Opening Future research Possibilities.

• 2849% increase for convolutional layers, over 1053% increase for Routing layers, over
1173.34% increase for ReLU, and over 271% for Shortcut layers.

• Through Targeting the Attributes, we can effectively Utilize the Edge without Prior Tuning
or Optimizing the models for each individual device.

• Each Scenario would give the scheduler important information for CAV tasks.

Discussion

• There are Several Unusual Findings

• In lower end devices, such as raspberry pi, we found a
perplexing issue where the object detection model was
able to successfully complete the detection task, but
results differed wildly between two pis.

• Both devices were same in hardware and was ran
with the SAME microSD card. Containing both os
and model.

• One would correctly mark and classify objects
where the other would mark almost all objects and
non-objects as fire hydrants.

Continued.

• Over subsidized workloads will trigger the OOM
killer Linux kernel on the Nvidia Jetson, but not on
the other platforms with the same Linux Kernel and
OOM policy.

• The Discrepancy between theoretical computation
load and the actual workload latency eliminates
theory based characterization and modeling.

Future works

• Currently, I am working on expanding the research using
NAS searching and transformers.

• Characterizing the models for Edge use case can be
useful for Cloud as well.

• Layer by Layer information and the memory intensive
layers can prove significant to both architecture design
and NAS searching research.

• The bottlenecks identified in the paper can also help
with privacy and security research topics.

	Perception Workload Characterization and Prediction on the Edges with Memory Contention for Connected Autonomous Vehicles
	Outline
	Introduction
	Autonomous vehicle to Edge node interaction
	Challenges
	Motivation and Literature
	Preliminary Characterization (CPU)
	GPU Characterization
	Optimization Analysis - Hardware
	Optimization Direction
	Initial Results
	Initial Modeling without Scenario Dividing
	Regression and Classification
	Regression and Classification
	Regression and Classification
	Methodology of Characterization
	Setup and Scenarios
	Experimental Analysis (Low-End)
	High-End
	Layer by Layer
	Characterization
	Conclusion
	Discussion
	Continued.
	Future works

