
CALID: Collaborative Accelerate LLM Inference with
Draft Model with Filter Decoding

Yifan Hua 1 Shengze Wang 1 Xiaoxue Zhang 2 Daniel Zhu 3 Arthur Cheong 4

Karan Mohindroo 5 Allan Dewey 1 Chen Qian 1

1UC Santa Cruz 2University of Nevada, Reno 3The Harker school
4Mountain View High School 5Pierrepont School

{yhua294,shengze,acdewey, cqian12}@ucsc.edu xiaoxuez@unr.edu
{danielfangzhu,karankmohindroo,arthurcheongmvhs}@gmail.com

1 Background and Motivation
Large language models (LLMs), such as autoregressive Transformer models Vaswani et al. (2017),
including GPT Brown et al. (2020) and LLaMA Touvron et al. (2023), drive a wide array of
applications. These models, which typically contain billions of parameters, are the backbone of many
LLM-based services. However, processing a single LLM request can cost up to ten times more than a
traditional keyword search Dastin and Nellis (2023). This significant cost emphasizes the urgent need
to reduce operational costs in cloud environments to meet the growing demand for LLM services.

To mitigate the underutilization of GPU parallelism, researchers have proposed Speculative Decod-
ing Leviathan et al. (2023); Chen et al. (2023), which uses smaller models to produce initial drafts.
The main LLM refines these drafts into a batch of inputs for a single request, as shown in Fig. 2b.
However, speculative decoding can decrease the throughput because 1) the parallelism is already
utilized and 2) it generates numerous unnecessary drafts for the large target model to evaluate, causing
a waste of computational resources. To eliminate such efficiency, we propose CALID which uses a
confidence score based filter decoding mechanism to avoid the unnecessary inferences of the large
model while utilizing the efficient small language model (SLM) to generate the results.

2 System Design

Draft &
Confidence

Refined ResultResult

Request

User
SLM

Batched Request

Accepted Draft &
Refined Confidence

Inference Gateway

Confidence
Filter

Request Cache
LLM

CloudConfidence > threshold

Confidence < threshold

Figure 1: CALID System Design

We introduce the architecture of CALID in this section, and illustrate the system design in Fig. 1.

2.1 Negative Log-Likelihood (NLL) based confidence score
The confidence score system is based on a negative log-likelihood (NLL) based metric, which
provides a significant indication of the output quality produced by an SLM. To compute the NLL-
based confidence score, we establish a probability distribution for potential subsequent tokens as
t1, t2, ..., tmaxk, ranked in descending likelihood in the distribution of all tokens, Pi. The Confidence
Score is calculated by the most likely token as Equation 1, which serves as an estimator for the output
quality of the draft model.

Confidence(Pi) = NLL(t1) (1)

The probability associated with the most likely candidates intuitively serves as a measure of ‘confi-
dence’ in the predictions made by the language model. Consider a programming assistant for code
completion as an example. To complete a for-loop statement ‘for (int i = 0; i < n;’, a preliminary draft
model might predict the tokens ‘i’ and ‘++’ with high likelihood. In these scenarios, the confidence
score C1 should be high, offering a reliable estimation of the output quality from the draft model.

Submitting to BayLearn 2024

The quick brown fox

Prompt

jumps over the
Inference Inference Inference

Output

(a) Vanilla Decoding

The quick brown fox

Prompt

jumps on a
Draft Inference

Drafts

The quick brown fox
The quick brown fox jumps
The quick brown fox jumps on
The quick brown fox jumps on a

Batch Inference jumps
over
the
hill

Output

Discard

(b) Speculative Decoding

The quick brown fox

prompt

jumps on a

Inference

Backlog

The quick brown fox jumps on

Draft Inference

the

Output : jumps on a the

From Draft Discard

(c) Filter Decoding

Figure 2: In the decoding process, the blue arrows represent inferences with draft models; the green arrows are
inferences with a draft model.

2.2 Filter Decoding
Although large transformer models deliver high-quality outputs and are pivotal in numerous AI-
driven applications, the efficiency of autoregressive generation presents a significant limitation. The
inherent attention mechanism in transformers requires that generating a sequence of T tokens needs
T sequential autoregressive evaluations by the model.

In the traditional decoding process in Fig. 2a, the model first evaluates the prompt as the initial input.
Then, a token is sampled from the distribution generated by the model and appended to the preceding
input to form the new input.

Speculative decoding, although not efficient, tolerates the variability in the difficulty of inference
steps, where some tokens are "harder" and others are "easier". Based on the insights of speculative
decoding, we further develop Filter Sampling. As shown in Alg. 2, Mp denotes the accurate LLM,
Me denotes the efficient SLM, input1..k denotes the user request prompts, T denotes the output
length, and Thresholdc denotes the adaptive threshold to balance output quality and throughput. We
also provide the vanilla sampling method of Auto-Regressive Sampling in Alg. 1 for comparison.

Algorithm 1 Auto-Regressive Sampling

Input: M(.|.), input, T
Initialize n← t
for i = 1 to T do

Pi ←Mp(x|input+ {x1, ..., xi−1})
Sample xi ∼ Pi

end for
return x1, ..., xT

0.00 0.04 0.08 0.12 0.16
Computation Cost (TFLOPS/Token)

5
6
7
8
9

10

Pe
rp

le
xi

ty

Raw Llama2
Our Method

Figure 3

Algorithm 2 Filter Sampling

Input: Mp(.|.), Me(.|.), input1..k, T ,
Thresholdc
Initialize n← t
for i = 1 to T do

Qi ←Me(x|input+ {x1, ..., xi−1})
Ci ← Confidence(Qi)
if Ci > Thresholdc then

Sample xi ∼ Qi

else
Pi ←Mp(x|input+ {x1, ..., xi−1})
Sample xi ∼ Pi

end if
end for
return x1, ..., xT

Confidence(·) function processes the distribution from the SLM to determine the confidence level
of its outputs. Outputs from the efficiency model that achieve high confidence scores are deemed
high-quality and accepted as final results. Lower-quality outputs are substituted with those from
the performance model, optimizing computational resource usage. This methodology ensures the
efficient allocation of computational resources, enhancing system’s overall performance.

The inference gateway serves as a pivotal component within the system’s architecture, functioning as
a proxy between clients that utilize SLMs and LLM clusters equipped with high-performance GPUs.

In the standard operation, the gateway aggregates user requests into batches and directs them to the
inference clusters. In CALID, the inference gateway initially caches the input from the users with their
confidence score in the Request Cache. Then, it executes batch Filter decoding by first calculating the
thresholdc. In our implementation, thresholdc is set to a constant value for simplicity. During filter
decoding, the Inference Gateway selectively batches requests with lower confidence scores, sends
them to the LLM Inference backend, and returns an early acceptance of drafts of the requests with
high confidence scores.

The preliminary evaluation in Fig. 3 demonstrates that substituting some results with those generated
by SLM has minimal impact on the overall quality of the output. Blue crosses represent the perfor-
mance of Llama2 (7B, 13B 70B from left to right). Orange dots represent our work with different
Thresholdc. The Inference gateway filters out 47.80%, 41.6% and 36.4% of requests to the Llama2
7b and the rest to Llama2 70b from left to right.

2

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models
are few-shot learners. Advances in neural information processing systems 33 (2020), 1877–1901.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model decoding with speculative sampling. arXiv
preprint arXiv:2302.01318 (2023).

Jeffrey Dastin and Stephen Nellis. 2023. Focus: For Tech Giants, ai like bing and Bard
poses billion-dollar search problem | reuters. https://www.reuters.com/technology/
tech-giants-ai-like-bing-bard-poses-billion-dollar-search-problem-2023-02-22/

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 2023. Fast inference from transformers via
speculative decoding. In International Conference on Machine Learning. PMLR, 19274–19286.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information
processing systems 30 (2017).

3 Acknowledgements

Y. Hua, S. Wang, A. Dewey, and C. Qian were partially supported by NSF Grant 1932447, 2114113,
and 2322919.

3

https://www.reuters.com/technology/tech-giants-ai-like-bing-bard-poses-billion-dollar-search-problem-2023-02-22/
https://www.reuters.com/technology/tech-giants-ai-like-bing-bard-poses-billion-dollar-search-problem-2023-02-22/

	Background and Motivation
	System Design
	Negative Log-Likelihood (NLL) based confidence score
	Filter Decoding

	Acknowledgements

