Improving the Faithfulness of LLM-based Abstractive Summarization with Span-level Unlikelihood Training

Sicong Huang, Qianqi Yan, Shengze Wang, Ian Lane

Motivation

Unfaithfulness in LLM-generated Summaries

Unfaithful generation is prevalent in all LLMs

UNIVERSITY OF CALIFORNIA

The unfaithfulness problem can heavily affect the practicality of summarization systems

Span-level faithfulness Annotations is Scarce

- Few datasets with span-level faithfulness annotations
- Fewer studies have used span-level faithfulness annotations to improve summary faithfulness

Goal: To improve summary faithfulness with span-level unfaithfulness annotations

Hey Robert, you said you could help with Tom's Pam: birthday?

Robert: Sure, what do you need?

Dataset Construction

Given that LLM-generated summaries are more preferred than the reference summaries in the original datasets, we construct a dataset with "organically hallucinated" summaries

- 1. Generate summaries with Llama2-7b on:
 - SAMSum: short daily conversations
 - **CNN:** news articles
- 2. Annotate unfaithful spans in summaries with GPT-4

System prompt: You will be given a source text and a summary of that text ... identify spans of text in the summary that is inconsistent to the source ... **User prompt:** <source> Pam: Hey Robert ... </source> <summary> Pam asked Robert ... by providing the address of the store. </summary> **GPT-4 output:** <summary> Pam asked Robert ... by

- Pam: I have to go shopping, cook, and clean, and I figured out I don't have time to pick up the balloons. Robert: From where?
- There's this store in the city centre that sells these Pam: awesome floating balloons.
- Robert: No problem, just text me the address.
- Bless you! Pam:

Robert: ;)

Pam asked Robert for help with Tom's birthday celebration, as she needs to go shopping, cook, and clean, and doesn't have time to pick up floating balloons from a store in the city centre. Robert agreed to help by providing the address of the store.

- <hallu> providing the address of the store.</hallu> </summary>
- Filter noisy outputs and balance data between positive 3. and negative examples

		Pos	Neg	Avg. hallu toks
Train	SAMSum	2774	2774	6.5%
	CNN	2774	2774	2.7%
Test	SAMSum	50	50	6.7%
	CNN	50	50	2.5%

	GPT4SL	G-Eval	AlignScore
SAMSum	67.0	4.631	0.696
CNN	69.0	4.897	0.800

Baseline (MLE training on positive samples) faithfulness

- Unlikelihood training can significantly improve summary faithfulness over baseline
- Task vector negation shows some improvements but gradient ascent is detrimental to performance

	F	Gradient Ascent		Unlikelihood			Task Vector			
	C	GPT4SL	G-Eval	A-Score	GPT4SL	G-Eval	A-Score	GPT4SL	G-Eval	A-Score
n	0.1	64.0	4.63	0.6867	80.0	4.63	0.7403	65.0	4.56	0.7127
	0.3	13.0	2.96	0.6964	71.0	4.70	0.7331	68.0	4.51	0.7165
Sui	0.5	0.0	2.26	0.4862	76.0	4.71	0.7380	69.0	4.54	0.7293
M	0.7	0.0	2.49	0.4885	67.0	4.72	0.7394	68.0	4.60	0.7184
S	0.9	0.0	1.13	0.3710	57.0	4.10	0.7355	69.0	4.53	0.7083
	1.0	-	-	-	-	-	-	72.0	4.58	0.7208
	0.1	52.0	4.59	0.7662	87.0	4.90	0.8151	73.0	4.84	0.7909
	0.3	2.0	2.69	0.7982	83.0	4.91	0.8129	64.0	4.86	0.7891
CNN	0.5	0.0	2.25	0.7114	72.0	4.84	0.8295	73.0	4.91	0.7852
	0.7	0.0	2.44	0.721	57.0	4.59	0.7942	87.0	4.86	0.7586
	0.9	0.0	0.69	0.1661	45.0	3.81	0.7894	84.0	4.89	0.7950
	1.0	-	_	-	-	-	-	83.0	4.87	0.7940

Tested methods faithfulness with different ε

	Baseline	Unlikelihood			
Human	57	67			
GPT4SL	64	75			
G-Eval	77	80			
AlignScore	50	67			
MCC with Human					
GPT4SL	0.669	0.572			
G-Eval	0.373	0.543			
AlignScore	0.043	0.088			
# of faithful summaries out of 95, according to human and automatic metrics. And each metric's correlation with human judgements					
Human evaluation confirms unlikelihood					

- training can effectively improve faithfulness
- GPT-4 span labeling correlates with human the highest, demonstrating its effectiveness at evaluating faithfulness