
OVERVIEW

• Physical nodes within the 

LEAD system are virtualized 

into multiple virtual nodes, 

each functioning as 

independent peers within a 

structured overlay network. 

• LEAD utilizes consistent 

hashing for peer addressing.

Conclusion

• LEAD includes the detailed design of training and updating learned models, 

implementing single-key and range queries, achieving load balancing, and 

dealing with system churns. The implementation and simulator code will be 

made open-sourced upon the acceptance of the paper.

• LEAD opens a completely new field for further research on integrating 

learned models with distributed networked systems. It is promising to 

explore multi-dimensional range queries with LEAD and to investigate its 

practical deployment of LEAD in the future.

References:

[1] Kraska, T., Beutel, A., Chi, E. H., Dean, J., & Polyzotis, N. (2018, May). The case for learned index structures. In Proceedings of the 2018 international conference on management of data (pp. 489-504).

[2] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., & Balakrishnan, H. (2001). Chord: A scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM computer communication review, 31(4), 149-160.

[3] Ibrahim Sabek, Kapil Vaidya, Dominik Horn, Andreas Kipf, Michael Mitzenmacher, and Tim Kraska. 2022. Can Learned Models Replace Hash Functions? Proc. VLDB Endow. 16, 3 (November 2022)

[4] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim Kraska, and Thomas Neumann. 2019. SOSD: A benchmark for learned indexes. arXiv preprint arXiv:1911.13014.

[5] D. S. Li, J. Cao, X. C. Lu, and K. C. C. Chan, “Efficient range query processing in peer-to-peer systems,” IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 1, pp. 78–91, 2009.

[6] A. Sen, A. S. M. S. Islam, and M. Y. S. Uddin, “Marques: Distributed multi-attribute range query solution using space filling curve on dths,” in 2015 International Conference on Networking Systems and Security (NSysS)

[7] B. Djellabi, M. Younis, and M. Amad, “Effective peer-to-peer design for supporting range query in internet of things applications,” Computer Communications, vol. 150, pp. 506–518, 2020.

Distributed Learned Hash Table 
Shengze Wang1 Yi Liu1 Xiaoxue Zhang1,2 Liting Hu1 Chen Qian1

1 University of California, Santa Cruz 2 University of Nevada, Reno

- Distributed Hash Tables (DHTs) are pivotal in numerous high-impact 

key-value applications such as CDN, DNS, IoT, DBs, and Blockchain.

- The problem. Traditional DHTs distribute keys randomly across the 

network. Hence, similar keys will be mapped to completely different 

storage locations. To perform a range query, all keys in the queried range 

need to be searched to ensure the completeness of the query. As these keys 

will be mapped to different locations based on the hash function, accessing 

these locations will result in high latency and message overhead, making 

range queries inefficient.

LEAD DESIGN

PRELIMINARY RESULTS

Fig. 3. Range Query in LEAD

LEAD (LEArned DHT) System:

- first introduces the concept of the Learned Hash Function under the 

realm of distributed key-value database systems. We renovate traditional 

hash functions that map keys to random positions, allowing LEAD to 

maintain the inherent order of keys and enhance range query performance.

- employs mechanisms that rapidly update the overlay routing tables and 

maintain the learned models with a distributed model update method 

termed the Federated Recursive Model (FRM).

- incorporates a load-balancing model using virtual nodes to allocate keys in 

an even manner that prevents overloading specific nodes

- designed to adapt dynamically to frequent changes in the system

Fig. 1. LEAD System Design

Fig. 2. Key Mapping with a Learned Hash Function

• LEAD uses the Learned Hash Function for key mapping. It takes a key 

as input and predicts its position within a hashing space as the hash value.

• Utilizing the cumulative distribution function (CDF) of keys managed on 

the network, the learned hash function maintains the inherent order of keys 

while mapping them and supports the capability for in-order data retrieval.

• LEAD employs the Recursive Model Indexes (RMI) structure to 

implement the learned hash function, as articulated as follows:

Fig. 4. Range query latency on various datasets from large-scale simulations

Fig. 5. Number of messages of each range query on various datasets

Fig. 6. Key-Value Pair Distribution

• LEAD achieves tremendous advantages 

in system efficiency compared to existing 

range query methods in large-scale 

distributed systems, reducing query 

latency and message cost by 80% +.

• LEAD exhibits remarkable scalability 

and robustness against system churn, 

providing a robust, scalable solution for 

efficient data retrieval in decentralized 

key-value systems.

Contacts


	Slide 1

